

_ _ _ _ _ _ _ _

zafing

FRC = functionele residuale capaciteit

The pressure difference between the mouth and alveoli is normally no greater than ~1 cmH2O.

_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _

 Erasmus MC Zafung

_ _ _ _ _ _ _ _

T = transitional bronchioli

Straight arrows: convection

Wiggly arrows: diffusion

> Erasmus MC 2 alms

Rabbit lung: 60% TLC a = alveoli d = alveolar duct

c = capillaries arrows = surface lining layer -> 'surfactant' Ep2 = type 2 cells Erasmus MC

H. Bachofen, S. Schu-rch Comparati e Biochemistry and Physiology Part A 129 (2001) 183 193

saline filled
= small airways

air filled

detergent = large airways and small alveoli due to high surface tension

Erasmus MC 2 afras

Erasmus MC 2 afras

Elastance = mate van stijfheid $E_{RS} = E_L + E_{CW}$

Compliance = mate van elasticiteit 'the ability of the lung to stretch and expand'

Erasmus MC Cafing

mL/cmH₂O

cmH₂O/mL

 $E_{rs} = E_L + E_{CW}$

Lung elastance E_L : $E_L = P_{L-insp} - P_{L-exp} / Vt$ $E_L = (P_{plat} - P_{es-insp}) - (total PEEP - P_{es-exp}) / Vt$

Chest wall elastance E_{cw} : $E_{cw} = P_{es-insp} - P_{es-exp} / Vt$

Erasmus MC 2 afrus

arrow = axial fiber

a = axial fiber (red)
b = septal fiber (green)
p = peripheral fiber (black)

Erasmus MC 2 afras

Erasmus MC Zafung

Erasmus MC Zafung

A SURFACTANT METABOLISM

Wet van LaPlace

LaPlace: P = 2Y / r

Expiratie

Expiratie

.

 Erasmus MC 2 afms

.

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Erasmus MC Zafung

Erasmus MC Cafus

Antwoord:

Erasmus MC

zafing

Erasmus MC Zafung

A INSPIRATION

The most rostral and dorsal subsets of the external intercostal muscles (gold)—as well as the parasternal subset of the internal intercostal muscles (blue)—have an imprivatory mechanical advantage.

B BUCKET-HANDLE AND WATER-PUMP-HANDLE EFFECTS

C EXPIRATION

The most caudal subset of the internal intercostal muscles (blue)—as well as the caudal-ventral subset of the external intercostal muscles (gold) and the triangularis sterni muscle (transversus thoracis)—have an *expiratory* mechanical advantage.

- IRV = Inspiratoir reservevolume
- Vt = Teugvolume
- ERV = Expiratoir reservevolume
- RV = Residuaal volume

- VC = Vitale capaciteit
- IC = Inspiratoire capaciteit
- FRC = Functionele residuale capaciteit
- TLC = Totale longcapaciteit

Erasmus MC 2 afras

-> dus aangedaan bij astma

Restrictief longaandoeningen: afname van het longvolume -> dus afname VC en FRC zoals een pneumonie

2.3-3.0

2.6-3.4

34-45

IC = Inspiratory capacity

VC = Vital capacity

FRC = Functional residual capacity

d.gommers@erasmusmc.nl

